浙江沐尘石英二长岩及其镁铁质包体的锆石 U-Pb 年龄和 Hf 同位素组成

——对岩浆混合作用的示踪

刘亮,邱检生,李真

南京大学成矿作用研究国家重点实验室,南京,210093

内容提要:浙江沐尘石英二长岩体中普遍发育形态各异的暗色镁铁质微粒包体。本文运用 LA-ICP-MS 锆石 U-Pb 定年技术,对该石英二长岩和其中的暗色镁铁质微粒包体进行了精确的年龄测定,获得的年龄分别为 112.1±1.0Ma 和 112.4±1.2Ma,二者在误差范围内一致,说明它们同时形成,这为指示包体属岩浆混合作用成因提供了关键证据。包体野外多呈塑性形态,包体中可见与寄主岩中相似的钾长石斑晶,包体中的斜长石发育复杂的核边环带结构,并普遍出现针状磷灰石,这些特征也指示包体的形成经历了岩浆混合作用过程。包体与寄主岩样品具有相似的 Hf 同位素组成,其共同特点主要表现为 ε_{Hf}(t)值散布于正值与负值之间。综合分析表明,沐尘岩体中的暗色镁铁质微粒包体最可能为亏损的地幔组分与其诱发的地壳物质部分熔融形成的长英质岩浆经混合作用的产物。

关键词:镁铁质微粒包体;石英二长岩;锆石 U-Pb 年龄;Hf 同位素组成;岩浆混合作用;浙江沐尘岩体

岩浆混合作用是壳一幔物质和能量交换的一种 重要形式,对其研究有助于揭示岩浆作用的深部过 程,因而历来为众多学者所关注(Didier and Barbarin,1991;周新民和朱云鹤,1992;王德滋和谢 磊,2008)。岩浆混合成因的中酸性岩石是岩浆混合 作用的岩石记录,这类岩石最显著的特征是含有细 粒且具有火成结构的镁铁质微粒包体(mafic microgranular enclaves, 简写为 MMEs, Didier and Barbarin, 1991)。岩浆混合作用产生的包体主要来 源于注入花岗质岩浆中的基性岩浆,它们与寄主岩 石同时形成,明显区别于其他非混合成因的包体,如 源区岩石经部分熔融后形成的耐熔物质残留体 (restite)和岩浆侵位过程中捕获的围岩捕虏体 (xenolith)等,它们一般早于寄主岩石形成。因此, 要查明中酸性岩体中富含的镁铁质微粒包体是否为 岩浆混合成因,除了从岩石学、矿物学、地球化学等 方面加以研究外,寄主岩与包体的年代学研究尤为 重要。另外,由于锆石 Lu-Hf 同位素体系的封闭温 度较之全岩 Rb-Sr 和 Sm-Nd 体系的封闭温度高,加 之锆石结晶较早,锆石 Hf 同位素组成能够记录壳 幔混合岩浆二端元的初始信息,可以更有效地对混 合岩浆的源区特征和岩浆混合过程进行示踪,因而 成为近年来花岗质岩石成因研究的最有力工具之 一。

沐尘石英二长岩体中发育大量暗色微粒包体, 前人对该岩体的矿物化学和全岩地球化学组成进行 过详细研究(卢成忠等,2006;卢成忠,2007),但尚缺 乏精确的定年资料,因此对于判定该岩体成岩过程 中是否存在岩浆混合作用缺乏关键证据,另外,对于 岩浆源区特征及岩浆混合过程也缺乏有效的同位素 地球化学制约。为此,本文在详细的野外和室内岩 相学观察基础上,对沐尘石英二长岩和其中的镁铁 质微粒包体进行了精确的锆石 U-Pb 年龄和 Hf 同 位素组成测定,以期为阐明包体属岩浆混合成因提 供进一步的证据。

1 岩体地质和岩相学特征

沐尘岩体位于浙江江山以东,出露于龙游县沐 尘至遂昌县双溪口一带。岩体平面上呈近于北北东 方向的纺锤状展布,南北长 18km,宽 3~5km,出露

注:本文为国家自然科学基金资助重点项目(编号 40730313)的成果。

收稿日期:2010-09-13;改回日期:2011-01-14;责任编辑:章雨旭。

作者简介:刘亮,男,1985年生。硕士研究生,岩石学专业。Email: sos1314521@126.com。通讯作者:邱检生,男,1965年生。教授,博 士生导师。Email: jsqiu@nju.edu.cn。

面积约 58km²。岩体北侧侵入于元古宇龙游岩群变 质岩中,南侧侵入于下白垩统高坞组、西山头组火山 岩及潜火山岩中(图 1)。岩体接触面外倾,倾角西 陡(75°)东缓(20°~58°)。岩体中普遍发育暗色镁铁 质微粒包体(图 2a-b),包体在寄主岩中呈随机分 布,大部分包体分散存在,局部呈包体群形式产出 (图 2b)。包体大小不一,从几厘米到几十厘米不 等。包体形态多样,多呈浑圆状外形,亦有扁平的透 镜状、纺锤状、哑铃状和撕裂状等复杂形态,反映包 体与寄主岩之间曾塑性共存。

沐尘岩体主体岩性为石英二长岩,边缘有少量 石英正长岩。石英二长岩多呈中粒或中细粒花岗结

构(图 2c),组成矿物 主要为斜长石(25% ~ 45%, $An = 15 \sim$ 40)、碱性长石(35% ~ 50%)、石英(5%~ 15%)、角闪石(5%~ 10%)和黑云母(3% ~5%), 副矿物主要 有锆石、榍石、磷灰 石、磁铁矿等。斜长 石呈半自形板柱状, 碱性长石主要为正长 石及出溶形成的条纹 长石,角闪石具绿 色一淡褐色多色性。 暗色镁铁质微粒包体 的岩性主要为黑云母 二长闪长岩(图 2d), 其组成矿物为斜长石 (55% ±)、钾长石 (15% ±)、黑云母 (15%±)及普通角闪 石(10%±), 偶见少 量石英,副矿物有锆 石、磷灰石、磁铁矿和 褐帘石及少量榍石。 斜长石普遍发育自形 的内核环带和增生边 结构(图 2e), 包体中 磷灰石常呈细长柱状 和针状(图 2f),长宽 比达十几甚至几十,

指示其应形成于高温岩浆进入低温岩浆的淬冷环境。

2 样品与分析方法

本次分别选取沐尘岩体寄主石英二长岩(MC-1)和暗色镁铁质微粒包体(MC-2)两件典型岩石样 品进行锆石 U-Pb 年龄测定和 Hf 同位素组成分析, 具体采样位置示于图 1,采样经纬度见表 1。在严格 避免污染的条件下,依次对每件全岩样品进行破碎、 淘洗和磁选以及重液分离,筛选出锆石精样,然后在 双目镜下观察所分离锆石的特征(如颜色、透明度和 晶型等),在此基础上,挑选出表面平整光洁,具不同 长宽比例、不同柱锥面特征和颜色的锆石颗粒。

图 2 沐尘岩体中暗色微粒包体野外照片及寄主岩与包体典型岩相学显微照片 Fig. 2 Field pictures of melanocratic microgranular enclaves in Muchen pluton and microphotographs of the representative quartz monzonite (host rocks) and enclosed enclaves

(a)、(b)石英二长岩中暗色微粒包体的野外照片;(c)寄主岩石英二长岩(正交偏光);(d)暗色微粒包体(正交偏光);(e)暗色微 粒包体中斜长石的核一边环带结构(正交偏光);(f)暗色微粒包体中呈针状产出的磷灰石(单偏光)。Q一石英;Af一碱性长石; Pl-斜长石;Amp-角闪石;Bt-黑云母;Ap-磷灰石

(a), (b) field pictures showing melanocratic microgranular enclaves in quartz monzonites; (c) the host quartz monzonite (crossed nicols); (d) melanocratic microgranular enclave (crossed nicols); (e) core-rim zoning texture in plagioclase from the melanocratic microgranular enclave (crossed nicols); (f) acicular apatites in melanocratic microgranular enclave (plane-polarized light); Q— quartz; Af—alkali-feldspar; Pl—plagioclase; Amp—amphibole; Bt—biotite; Ap—apatite

表 1 沐尘岩体石英二长岩和镁铁质微粒包体锆石 LA-ICP-MS U-Pb 定年结果

Table 1 Zircon LA-ICP-MS U-Pb dating results of quartz monzonites and the mafic microgranular

enclaves in the Muchen pluton

③Ⅲ cp 含量(µg/g)				同位素比值						年 龄(Ma)				
测 正 占 旦	232 T 1	238 T T	Th/U	$n(^{207}{ m Pb})/n(^{206}{ m Pb})$		$n(^{207}\text{Pb})/n(^{235}\text{U})$		$n(^{206}\mathrm{Pb})/n(^{238}\mathrm{U})$		$^{207}Pb/^{235}U$		$^{206}Pb/^{238}U$		ρr
从写	505 I N			比值	$\pm 1\sigma$	比值	$\pm 1\sigma$	比值	$\pm 1\sigma$	年龄	$\pm 1\sigma$	年龄	$\pm 1\sigma$	
寄主岩样品:MC-1,采样经纬度坐标:N28°50′07.5″,E119°11′02.7″														
MC-1-01	316	240	1.31	0.05002	0.00181	0.1187	0.00421	0.01721	0.00028	114	4	110	2	0.9
MC-1-02	479	371	1.29	0.04896	0.00162	0.11855	0.00387	0.01756	0.00028	114	4	112	2	0.9
MC-1-03	259	193	1.34	0.04978	0.00232	0.1209	0.00547	0.01762	0.00032	116	5	113	2	0.9
MC-1-04	210	172	1.22	0.04914	0.00214	0.11961	0.00507	0.01766	0.0003	115	5	113	2	0.9
MC-1-05	308	226	1.37	0.04923	0.00224	0.11955	0.00527	0.01761	0.00031	115	5	113	2	0.9
MC-1-06	493	393	1.25	0.04605	0.00174	0.10771	0.00374	0.01697	0.00025	104	3	108	2	0.9
MC-1-07	347	247	1.41	0.04884	0.00227	0.11664	0.00527	0.01732	0.00032	112	5	111	2	0.9
MC-1-08	383	268	1.43	0.04931	0.00181	0.12032	0.00432	0.0177	0.00029	115	4	113	2	0.9
MC-1-09	305	230	1.32	0.0489	0.00212	0.11747	0.00496	0.01743	0.00031	113	5	111	2	0.9
MC-1-10	175	159	1.10	0.04851	0.00234	0.11919	0.0056	0.01782	0.00033	114	5	114	2	0.9
MC-1-11	377	313	1.20	0.04889	0.0021	0.1192	0.00498	0.01768	0.0003	114	5	113	2	0.9
MC-1-12	256	213	1.20	0.04763	0.00243	0.11532	0.00569	0.01756	0.00033	111	5	112	2	0.9
MC-1-13	418	348	1.20	0.05039	0.00145	0.12198	0.00348	0.01756	0.00026	117	3	112	2	0.9
MC-1-14	167	127	1.31	0.04877	0.00364	0.11899	0.00856	0.0177	0.00043	114	8	113	3	0.9
MC-1-15	251	231	1.09	0.05007	0.00194	0.12118	0.00459	0.01755	0.00029	116	4	112	2	0.9
MC-1-16	123	97	1.27	0.04907	0.00529	0.12019	0.01249	0.01777	0.00057	115	11	114	4	0.9
MC-1-17	397	317	1.25	0.04921	0.00164	0.12064	0.00394	0.01778	0.00027	116	4	114	2	0.9
MC-1-18	221	200	1.10	0.04896	0.00236	0.1167	0.00545	0.01729	0.00032	112	5	111	2	0.9
			包体	样品.MC-2	2,采样经纬	度坐标:N	28°49′09.2	2",E119°11	'32.2"					
MC-2-01	1716	832	2.06	0.04981	0.00153	0.12045	0.00362	0.01754	0.00026	115	3	112	2	0.9
MC-2-02	191	168	1.14	0.04944	0.00417	0.12007	0.00975	0.01762	0.00048	115	9	113	3	0.9
MC-2-03	562	670	0.84	0.04918	0.00183	0.11931	0.00433	0.0176	0.00029	114	4	112	2	0.9
MC-2-04	215	212	1.02	0.04949	0.00204	0.12031	0.00488	0.01763	0.0003	115	4	113	2	0.9
MC-2-05	403	424	0.95	0.04923	0.00273	0.11952	0.00636	0.01761	0.00036	115	6	113	2	0.9
MC-2-06	615	700	0.88	0.05017	0.00201	0.12116	0.0047	0.01752	0.0003	116	4	112	2	0.9
MC-2-07	704	864	0.81	0.0493	0.00184	0.11804	0.00438	0.01737	0.00031	113	4	111	2	0.9
MC-2-08	546	606	0.90	0.04846	0.00112	0.1176	0.00276	0.0176	0.00025	113	3	112	2	0.9
MC-2-09	700	716	0.98	0.04866	0.00113	0.11825	0.00278	0.01762	0.00025	113	3	113	2	0.9
MC-2-10	255	276	0.92	0.04839	0.00155	0.1168	0.00371	0.01751	0.00027	112	3	112	2	0.9
MC-2-11	505	628	0.80	0.04935	0.0013	0.12101	0.0032	0.01778	0.00026	116	3	114	2	0.9

被测锆石多数为浅黄色或无色,少量为褐色。 寄主岩样品(MC-1)被测锆石为长柱状或柱状,自形 程度较好。颗粒大小差别较大,长径为80~ 320μm,宽为50~150μm,长宽比为1:1~3:1;暗 色镁铁质微粒包体样品(MC-2)被测锆石呈柱状或 短柱状,颗粒粒度相对较小,自形程度多为半自形, 长径为80~200μm,宽为50~100μm,长宽比为1: 1~2:1。将这些挑选出的锆石颗粒用环氧树脂胶 结,待固结后细磨至锆石颗粒核部出露,抛光成样品 靶以待测试。测定前先采用装有阴极荧光探头的扫 描电镜对抛光后的锆石样品进行阴极发光(CL)图 像拍摄,以了解被测锆石内部的结构,并以此作为锆 石年龄测定选取分析点位的依据。

锆石 U-Pb 年龄测定在南京大学内生金属矿床

成矿机制研究国家重点实验室进行,采用与 Agilent 7500s ICP-MS 连接起来的 New Wave 213 nm 激光 系统取样。激光束斑直径为 30μ m,频率为 5Hz。 样品经剥蚀后,由 He 气作为载气,再和 Ar 气混合 后进入 ICP-MS 进行分析。U-Pb 分馏根据澳大利 亚锆石标样 GEMOC GJ-1(²⁰⁷ Pb/²⁰⁶ Pb 年龄 608.5 ±1.05Ma, Jackson et al.,2004)来校正,采用锆石 标样 Mud Tank(732±5Ma, Black and Gulson, 1978)作为内标以控制分析精度。每个测试流程的 开始和结尾均分别测 2 个 GJ 标样,另外测试 1 个 MT 标样,其间一般夹 10 个待测样品点。U-Pb 年 龄和 U、Th、Pb 的计数由 Glitter(ver. 4.4)获得。 详细的分析方法和流程类似于 Griffin 等(2004)以 及 Jackson 等(2004)。由于²⁰⁴ Pb 的信号极低,以及 载气中²⁰⁴ Hg的干扰,该方法不能直接精确测得其 含量,因此,使用嵌入 Excel的 ComPbCorr # 3_15G 程序(Andersen,2002)来进行铅校正。年龄谐和图 用 Isoplot 程序(ver. 2.49,Ludwig,2001)获得。

Lu-Hf 同位素分析在西北大学大陆动力学国家 重点实验室采用英国 Nu Instruments 公司生产的 Nu Plasma HR 多接收电感耦合等离子体质谱仪 (MC-ICP-MS)进行,激光剥蚀系统为德国 MicroLas 公司生产的 GeoLas 2005,分析中使用的 激光束斑为 $44\mu m$,激光频率为 10Hz,脉冲能量为 80mJ,剥蚀时间为 50s,用锆石 91500、MON-1 和 GJ-1 作外标,本次实验获得的上述三个标样的 $n(^{176}$ Hf)/ $n(^{177}$ Hf)比值分别为 $0.282298 \pm$ $0.000008(n = 32, 2\sigma)$ 、 $0.282729 \pm 0.000006(n =$ $20, 2\sigma$)和 $0.282032 \pm 0.000011(n = 14, 2\sigma)$,详细 分析方法见 Yuan 等(2008)。

3 分析结果

3.1 锆石 U-Pb 年龄

表1列出了沐尘岩体锆石 U-Pb 同位素测年结 果,被测锆石代表性样品的阴极发光(CL)图像及测 定点位和相应的²⁰⁶ Pb/²³⁸ U 表面年龄示于图 3,图 4 为年龄谐和图。本次对寄主岩样品(MC-1)共测定 了 18 个锆石点,分析点的 Th/U 比值变化于 1.09 ~1.43 之间;对镁铁质微粒包体样品(MC-2)共测 定了 11 个锆石点,分析点的 Th/U 比值变化于 0.80~2.06 之间。这些被测锆石点的 Th/U 比值 均在 0.4 以上,与典型岩浆锆石具有高 Th/U 比值 的特征一致(Wu and Zheng,2004),锆石颗粒阴极 发光图像(CL)均显示比较清晰的韵律震荡环带结 构或者条带状的均匀吸收(图 3),说明被测锆石为 典型 的 岩浆结晶锆石 (Pidgeon et al., 1998; Claesson et al., 2000),因而所获得的年龄能够代 表岩石的结晶年龄。

在 $n(^{206} Pb/^{238} U) - n(^{207} Pb/^{235} U)$ 谐和图(图 4) 上,所有样品点均投影在谐和线上或附近,谐和度均 在 95%以上,这一特征指示被测锆石未遭受明显的 后期热事件影响。统计结果表明,对年龄较小(< 1Ga)的 锆 石 使 用²⁰⁶ Pb/²³⁸ U 年 龄 更 加 准 确 (Compston et al.,1992; Griffin et al.,2004),因此 本文采用²⁰⁶ Pb/²³⁸ U 年龄进行加权平均计算。对样 品 MC-1 所测定的 18 颗锆石样品的²⁰⁶ Pb/²³⁸ U 加权 平均年龄为 112.1±1.0Ma(MSWD=0.44,2\sigma,图 4a),对样品 MC-2 所测定的 11 颗锆石样品的 ²⁰⁶ Pb/²³⁸ U加权平均年龄为 112.4±1.2Ma(MSWD =0.16,2\sigma,图 4b)。

图 3 沐尘岩体石英二长岩和镁铁质微粒包体代表性被测锆石的阴极发光图像、LA-ICP-MS分析点位 及²⁰⁶ Pb/²³⁸ U 视年龄

Fig. 3 CL images, localities of the points for LA-ICP-MS measurements and the 206 Pb/ 238 U apparent ages of representative detected zircons from quartz monzonites and the mafic microgranular enclaves in the Muchen pluton

图 4 沐尘岩体石英二长岩和镁铁质微粒包体锆石 U-Pb 谐和图 Fig. 4 U-Pb concordia diagrams of zircons from quartz monzonites and the mafic microgranular enclaves in the Muchen pluton

3.2 Hf 同位素组成

对前面 2 件已做 U-Pb 定年的样品进行了系统的 Hf 同位素组成测定,表 2 列出了测试结果及根

据年龄计算的有关参数。由表中数据可看出,寄主 岩石英二长岩的 $n(^{176} \text{Hf})/n(^{177} \text{Hf})$ 值为 0.282681 ~0.282757,经年龄校正的 $\epsilon_{\text{Hf}}(t)$ 值变化于一0.9~ 1.8;镁铁质微粒包体 $n(^{176} \text{Hf})/n(^{177} \text{Hf})$ 值为 0.282594~0.282712,经年龄校正的 $\epsilon_{\text{Hf}}(t)$ 值变化 于一3.9~0.3。包体与寄主岩样品具有大致相似的 Hf 同位素组成,其共同特点主要表现为 $\epsilon_{\text{Hf}}(t)$ 值散 布于正值与负值之间(表 2、图 5)。值得注意的是, 部分镁铁质微粒质包体中的锆石具有比寄主石英二 长岩中锆石更低的 $\epsilon_{\text{Hf}}(t)$ 值;此外,在寄主石英二长 岩中亦发现部分锆石具有比包体中锆石更高的 $\epsilon_{\text{Hf}}(t)$ 值。

4 讨论

由上述定年结果可看出,沐尘岩体中镁铁质微 粒包体与石英二长岩(寄主岩)的形成年龄十分接 近,可以说二者在测试误差范围内年龄值一致,表明 它们同时形成,这为指示岩体成岩过程中存在岩浆 混合作用提供了关键证据。

沐尘岩体镁铁质微粒包体野外及岩相学特征也 说明其为岩浆混合作用的产物,如:

图 5 沐尘岩体石英二长岩(a)和镁铁质微粒包体(b)的锆 石 ε_{Hf}(t)值频数分布直方图

Fig. 5 Histograms of zircon $\varepsilon_{Hf}(t)$ values for the quartz monzonites (a) and the mafic microgranular enclaves (b) in the Muchen pluton

样号

		MC-1, 출	f王宕(右英二长宕),	$t = 112.1 \mathrm{Ma}$							
MC-1-01	0.031692	0.001298	0.282757	0.000014	1.8	0.5	1.05	-0.96			
MC-1-02	0.024371	0.000977	0.282705	0.000017	0.0	0.6	1.17	-0.97			
MC-1-03	0.031338	0.001283	0.282681	0.000013	-0.9	0.5	1.22	-0.96			
MC-1-04	0.024121	0.000972	0.282707	0.000011	0.1	0.4	1.16	-0.97			
MC-1-05	0.027239	0.001082	0.282708	0.000016	0.1	0.6	1.16	-0.97			
MC-1-06	0.027644	0.001086	0.282697	0.000022	-0.3	0.8	1.19	-0.97			
MC-1-07	0.026688	0.001082	0.282718	0.000015	0.5	0.5	1.14	-0.97			
MC-1-08	0.027810	0.000998	0.282707	0.000020	0.1	0.7	1.16	-0.97			
MC-1-09	0.021135	0.000870	0.282697	0.000015	-0.2	0.5	1.18	-0.97			
MC-1-10	0.022455	0.000919	0.282733	0.000014	1.0	0.5	1.10	-0.97			
MC-1-11	0.039695	0.001562	0.282728	0.000015	0.8	0.5	1.12	-0.95			
MC-1-12	0.019641	0.000818	0.282719	0.000017	0.5	0.6	1.14	-0.98			
MC-1-13	0.024133	0.001001	0.282737	0.000015	1.2	0.5	1.10	-0.97			
MC-1-14	0.021986	0.000904	0.282716	0.000014	0.4	0.5	1.14	-0.97			
MC-1-15	0.021603	0.000883	0.282715	0.000011	0.4	0.4	1.14	-0.97			
MC-1-16	0.023810	0.000970	0.282726	0.000015	0.8	0.5	1.12	-0.97			
MC-1-17	0.027433	0.001100	0.282718	0.000015	0.5	0.5	1.14	-0.97			
MC-1-18	0.021158	0.000866	0.282721	0.000013	0.6	0.5	1.13	-0.97			
MC-2,闪长质包体,t=112.4Ma											
MC-2-01	0.024731	0.000917	0.282691	0.000021	-0.5	0.7	1.20	-0.97			
MC-2-02	0.031219	0.001355	0.282646	0.000015	-2.1	0.5	1.30	-0.96			
MC-2-03	0.015764	0.000602	0.282674	0.000017	-1.0	0.6	1.24	-0.98			
MC-2-04	0.022975	0.000833	0.282687	0.000018	-0.6	0.6	1.21	-0.97			
MC-2-05	0.034941	0.001423	0.282594	0.000020	-3.9	0.7	1.42	-0.96			
MC-2-06	0.020925	0.000949	0.282672	0.000013	-1.1	0.5	1.24	-0.97			
MC-2-07	0.017671	0.000669	0.282690	0.000015	-0.5	0.5	1.20	-0.98			
MC-2-08	0.011564	0.000495	0.282672	0.000020	-1.1	0.7	1.24	-0.99			
MC-2-09	0.032096	0.001111	0.282666	0.000018	-1.4	0.6	1.26	-0.97			
MC-2-10	0.013914	0.000591	0.282712	0.000011	0.3	0.4	1.15	-0.98			
MC-2-11	0.024881	0.000936	0.282647	0.000011	-2.0	0.4	1.30	-0.97			
MC-2-12	0.026123	0.001035	0.282611	0.000013	-3.3	0.4	1.38	-0.97			
MC-2-13	0.040408	0.001436	0.282610	0.000016	-3.4	0.6	1.38	-0.96			
MC-2-14	0.016633	0.000751	0.282656	0.000014	-1.7	0.5	1.28	-0.98			
MC-2-15	0.022246	0.000807	0.282698	0.000014	-0.2	0.5	1.18	-0.98			
MC-2-16	0.014899	0.000703	0.282673	0.000014	-1.1	0.5	1.24	-0.98			
MC-2-17	0.038866	0.001471	0.282627	0.000017	-2.8	0.6	1.34	-0.96			
MIC-2-18	0.026669	0.001056	0.282633	0.000021	-2.5	0.7	1.33	-0.97			
注. $\mathfrak{su}(t) = 1$	$0000 \cdot \int \frac{n(176 \text{ H})}{n(177 \text{ H})}$	$\frac{\mathrm{If}}{\mathrm{If}}\Big]_{\mathrm{S}} - \Big[\frac{n(177\mathrm{Lu})}{n(177\mathrm{Hf})}\Big]$	$s \cdot (e^{\lambda} - 1) = 1$	$\left \begin{array}{c} T_{\text{DM}} \right = - \frac{1}{2}$	<u>l</u> • In	1 +	$\left[\frac{n(176 \text{ Hf})}{n(177 \text{ Hf})}\right]_{\text{s}} =$	$\left[\frac{n^{(176}\mathrm{Hf})}{n^{(177}\mathrm{Hf})}\right]_{\mathrm{DM}}$			
	$\left[\frac{n(^{176}\mathrm{Hf})}{n(^{177}\mathrm{Hf})}\right]$	$\left _{\text{CHUR},0} - \left[\frac{n(^{177} \text{Lu})}{n(^{177} \text{Hf})}\right]\right $	• $(e^{\lambda t} - 1)$				$\left[\frac{n(^{177}\text{Lu})}{n(^{177}\text{Hf})}\right]_{\text{s}} =$	$\left[\frac{n^{(177}\mathrm{Lu})}{n^{(177}\mathrm{Hf})}\right]_{\mathrm{DM}}$			
$\begin{bmatrix} \frac{n(177 \text{ Lu})}{n(177 \text{ Hf})} \end{bmatrix}_{s}$											
$T_{DM 2} = T_{DM1} - (T_{DM1} - t) \cdot \frac{1}{f_{CC} - f_{DM}}; \ f_{Lu/Hf} = \frac{1}{\left[\frac{n(177 \text{ Lu})}{n(177 \text{ Hf})}\right]_{CHUR}} - 1$											
其中: $\lambda = 1.867 \times 10^{-11}$ / a(Soderlund et al., 2004); $\left[\frac{n(^{177}\text{Lu})}{n(^{177}\text{Hf})}\right]_{s}$ 和 $\left[\frac{n(^{176}\text{Hf})}{n(^{177}\text{Hf})}\right]_{s}$ 为样品测量值; $\left[\frac{n(^{177}\text{Lu})}{n(^{177}\text{Hf})}\right]_{CHUR} = 0.0332$,											
$= n(^{176} \text{ Hf}) = n(^{176} $											

表 2 沐尘岩体石英二长岩和镁铁质微粒包体锆石 Hf 同位素组成

 $n(^{176} \text{ Yb})/n(^{177} \text{ Hf})$ $n(^{176} \text{ Lu})/n(^{177} \text{ Hf})$ $n(^{176} \text{ Hf})/n(^{177} \text{ Hf})$

Table 2 Zircon Hf isotopic compositions of quartz monzonites and mafic microgranular enclaves in the Muchen pluton

 2σ

 $\varepsilon_{\rm Hf}(t)$

 2σ

$$\begin{bmatrix} \frac{n(-111)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{CHUR},0} = 0.282772 \text{ (Blichert-Toft et al., 1997)}; \begin{bmatrix} \frac{n(-2.03)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{DM}} = 0.0384, \begin{bmatrix} \frac{n(-111)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{DM}} = 0.28325 \text{ (Vervoort et al., 1997)}; \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{CHUR}} = 0.0384, \begin{bmatrix} \frac{n(-111)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{DM}} = 0.28325 \text{ (Vervoort et al., 1997)}; \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{CHUR}} = 0.0384, \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{DM}} = 0.28325 \text{ (Vervoort et al., 1997)}; \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{CHUR}} = 0.0384, \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{DM}} = 0.28325 \text{ (Vervoort et al., 1997)}; \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{CHUR}} = 0.0384, \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{DM}} = 0.28325 \text{ (Vervoort et al., 1997)}; \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{CHUR}} = 0.0384, \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{DM}} = 0.28325 \text{ (Vervoort et al., 1997)}; \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{CHUR}} = 0.0384, \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{DM}} = 0.28325 \text{ (Vervoort et al., 1997)}; \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{CHUR}} = 0.0384, \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{CHUR}} = 0.28325 \text{ (Vervoort et al., 1997)}; \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{CHUR}} = 0.28325 \text{ (Vervoort et al., 1997)}; \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{CHUR}} = 0.28325 \text{ (Vervoort et al., 1997)}; \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{CHUR}} = 0.28325 \text{ (Vervoort et al., 1997)}; \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{CHUR}} = 0.28325 \text{ (Vervoort et al., 1997)}; \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{CHUR}} = 0.28325 \text{ (Vervoort et al., 1997)}; \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{CHUR}} = 0.28325 \text{ (Vervoort et al., 1997)}; \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{CHUR}} = 0.28325 \text{ (Vervoort et al., 1997)}; \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{CHUR}} = 0.28325 \text{ (Vervoort et al., 1997)}; \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{CHUR}} = 0.28325 \text{ (Vervoort et al., 1997)}; \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{CHUR}} = 0.28325 \text{ (Vervoort et al., 1997)}; \begin{bmatrix} \frac{n(-177)}{n(^{177} \text{ Hf})} \end{bmatrix}_{\text{CHUR}} = 0.28325 \text{ (Vervoort et$$

 $f_{\rm Lu/Hf}$

 $T_{DM2}(Ga)$

(1)包体多呈浑圆状外形(图 2a、b),并可见透 镜状、纺锤状、哑铃状和撕裂状等形态,反映包体与 寄主岩之间曾塑性共存。

(2)包体中常出现与寄主岩中相似的钾长石斑 晶(图 2a),有的钾长石斑晶横跨包体与寄主岩边界 产出,同样指示包体与寄主岩岩浆曾塑性共存,包体 中的钾长石斑晶是酸性岩浆早期结晶的钾长石呈固 态运移到基性岩浆(包体)中及其边缘的结果(周金 城等,1994)。

(3)镁铁质微粒包体中的斜长石常发育复杂的 内部结构,如筛孔结构和核边环带结构等,其中尤以 发育核边环带结构常见(图 2e),反映斜长石的生长 经历了两个阶段,内核是在岩浆混合之前形成的,外 面的增生边是在岩浆混合之后形成的(Baxter and Feely,2002;谢磊等,2004)。

(4)包体中常见针状产出的磷灰石(图 2f),它 们应是高温的基性岩浆注入到低温的酸性岩浆房中 导致基性岩浆温度迅速下降而淬冷结晶的产物,因 此,镁铁质微粒包体中针状磷灰石的产出也被认为 是成岩过程中存在岩浆混合作用的重要标志之一 (Barbarin,2005)。

镁铁质微粒包体锆石 Hf 同位素组成不均一, 离散度较大, $\epsilon_{\rm Hf}(t)$ 值散布于一3.9~0.3之间,变化 幅度达4个 ϵ 单位,这一特点说明其源区不可能由 单一组份构成,至少应存在两种具有明显不同 $\epsilon_{\rm Hf}(t)$ 值的岩浆参与成岩过程。在 $t-\epsilon_{\rm Hf}(t)$ 关系图上, 包体与寄主岩样品点均落在东华夏地块地壳基底演 化域之上(图 6),二者的二阶段 Hf 模式年龄分别为 1.05~1.22Ga 和 1.15~1.42Ga(表 2),它们较之 华夏地块基底变质岩的 Nd 模式年龄(主要为 1.8~ 2.2Ga,陈江峰等,1999)均显著偏低,说明沐尘岩体 包体与寄主岩成岩过程中均应有亏损的幔源组分参 与。

沐尘岩体寄主石英二长岩矿物组成中含有不等 量石英(5%~15%),属于广义的花岗岩类岩石。地 幔组分参与花岗岩类岩石成岩过程的可能方式有二 种情形,其一为幔源岩浆与被其诱发的地壳物质部 分熔融形成的长英质岩浆在地壳深部混合形成壳幔 混源岩浆;另一种方式是幔源岩浆首先侵入到地壳 基底岩石中形成初生地壳,然后在后期热事件的影 响下,这种既有初生地壳又有古老基底地壳构成的 混合地壳源岩发生部分熔融。由于华夏地块基底岩 石的 *T*_{DM}值主要为古、中元古代(沈渭洲等,1993;陈

江峰等,1999),不支持年轻地壳的存在,因此,沐尘 岩体包体与寄主岩成岩过程中幔源组分的参与方式 最可能为幔源岩浆与壳源岩浆在深部岩浆房混合。 东南沿海晚中生代岩浆作用过程中的壳幔岩浆混合 现象已有大量文献记述(王德滋和谢磊,2008;Xu et al.,1999;李武显等,1999;周金城等,1994),沐尘 岩体镁铁质包体锆石 Hf 同位素组成变化范围较 大,包体与寄主岩的 $\epsilon_{\rm Hf}(t)$ 值散布于正值与负值之 间,这一 Hf 同位素组成特征也指示它们应起源于 幔源岩浆与其诱发的地壳物质部分熔融形成的长英 质岩浆在地壳深部直接混合(Griffin et al.,2002; Belousova et al.,2006;Andersen et al.,2007;Yang et al.,2007),其中 $\epsilon_{\rm Hf}(t)$ 为正值的锆石颗粒更多地 保留了来自亏损地幔组分的特征,而 $\epsilon_{\rm Hf}(t)$ 为负值 的锆石颗粒则主要记录了来自地壳组分的特征。

值得注意的是,本次研究发现沐尘岩体镁铁质 微粒包体中部分锆石具有比寄主石英二长岩中锆石 更低的 ε_{Hf}(t)值,而在寄主石英二长岩中亦发现部 分锆石颗粒具有比包体中锆石更高的 ε_{Hf}(t)值(表 2、图 5),这表明在沐尘岩体成岩过程中所发生的岩 浆混合应属于 Griffin 等 (2002)所提出的紊流混合 (turbulent mixing)。他们认为,当不同的(基性和 酸性)岩浆通过相对狭窄的岩浆通道侵位,在发生混 合的同时被推挤进入同一岩浆房并开始发生分离结 晶,则属于紊流混合(Griffin et al.,2002)。在这种 紊流混合(turbulent mixing)中,常伴有源自岩浆混 合作用中不同端元熔体的锆石的转移,亦就是说,寄 主岩中具有低 ε_{Hf}(t)值的锆石可以进入到暗色包体 之中,相应地,暗色包体中具高 ε_{Hf}(t)值的锆石也可 以进入到寄主岩中。紊流混合的发生除了表现在上 述锆石 Hf 同位素特征上,在锆石形态学上也有所 反映,如在 CL 图像上,包体中的部分锆石具有和寄 主岩中大部分锆石类似的晶形和典型的韵律环带结 构(如 MC-2-12;见图 3);而寄主岩中部分锆石也具 有与包体中锆石类似的特征(如 MC-1-10;见图 3)。

综上所述, 沐尘岩体中镁铁质包体与寄主岩成 岩年龄一致, 包体多呈塑性形态, 包体中可见寄主岩 中钾长石的捕虏晶, 包体中的斜长石发育复杂的核 边环带结构, 并普遍出现针状磷灰石, 这些特征均指 示包体的形成经历了岩浆混合作用过程。包体中锆 石的 Hf 同位素组成变化范围较大, 包体与寄主岩 的 ε_{Hf}(t) 值散布于正值与负值之间, 进一步指示其 最可能为亏损的地幔组分与其诱发的地壳物质部分 熔融形成的长英质岩浆经混合作用的产物。

5 结论

(1)沐尘岩体暗色镁铁质微粒包体与寄主石英 二长岩的锆石 U-Pb 年龄分别为 112.4±1.2 Ma 和 112.1±1.0Ma,二者在测试误差范围内一致,说明 它们为同时形成,这为指示包体属岩浆混合作用成 因提供了关键证据。镁铁质微粒包体的野外形态及 众多岩相学特征也指示成岩过程中存在岩浆混合作 用。

(2)锆石 Hf 同位素组成指示暗色镁铁质微粒 包体最可能为亏损的地幔组分与被其诱发的地壳物 质部分熔融形成的长英质岩浆经混合作用的产物。

参考文献 / References

- 陈江峰,郭新生,汤加富,周泰禧. 1999. 中国东南地壳增长与 Nd 同 位素模式年龄. 南京大学学报(自然科学), 35(6): 649~658.
- 李武显,董传万,周新民. 1999. 平潭和漳州深成杂岩中斜长石捕掳 晶与岩浆混合作用. 岩石学报,15(2): 286~290.
- 卢成忠,董传万,汪庆华. 2006.浙江沐尘岩体的矿物学特征与成岩物理化学条件.矿物学报,26(4):424~430.
- 卢成忠. 2007. 浙江沐尘石英二长岩体的岩石地球化学特征及构造 意义. 地球化学,36(5):457~466.
- 沈渭洲,朱金初,刘昌实,徐士进,凌洪飞. 1993. 华南基底变质岩的 Sm-Nd 同位素及其对花岗岩类物质来源的制约. 岩石学报,9 (2):115~124.
- 王德滋,周金城,邱检生,张海进. 1994. 东南沿海白垩世火山活动 中的岩浆混合及壳幔作用证据. 南京大学学报(地球科学),6

(4):317~322.

- 王德滋,谢磊. 2008. 岩浆混合作用:来自岩石包体的证据. 高校地质 学报,14(1):16~21.
- 谢磊,王德滋,王汝成,邱检生,陈小明. 2004. 浙江普陀花岗杂岩体 中的石英闪长质包体:斜长石内部复杂环带研究与岩浆混合史 记录.岩石学报,20(6):1397~1408.
- 周金城,张海进,俞云文. 1994.浙江新昌早白垩世复合岩流中的岩 浆混合作用. 岩石学报,10(3): 236~247.
- 周新民,朱云鹤. 1992. 江绍断裂带的岩浆混合作用及两侧的前寒 武纪地质. 中国科学(B),(3): 296~303.
- Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report ²⁰⁴Pb. Chem. Geol. , 192: 59~79.
- Andersen T, Griffin W L, Sylvester A G. 2007. Sveconorwegian crustal underplating in southwestern Fennoscandia: LAM-ICPMS U-Pb and Lu-Hf isotope evidence from granites and gneisses in Telemark, southern Norway. Lithos, 93: 273 ~ 287.
- Barbarin B. 2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos, 80: 155~177.
- Baxter S, Feely M. 2002. Magma mixing and mingling textures in granitoids: examples from Galway Granite, Connemara, Ireland. Mineral. Petrol., 76: 63~74.
- Belousova E A, Griffin W L, O'Reilly S Y. 2006. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: Examples from Eastern Australian granitoids. J. Petrol., 47: 329~353.
- Black L P, Gulson B L. 1978. The age of the Mud Tank carbonatite, Strangways range, Northern territory. BMR Journal of Australian Geology and Geophysics, 3: 227~232.
- Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle—crust system. Earth Planet. Sci. Lett., 148(1~2): 243~258.
- Claesson S, Vertrin V, Bayanova T, Downes H. 2000. U-Pb zircon ages from a Devonian carbonatite dyke, Kola peninsula, Russia: a record of geological evolution from the Archaean to the Palaeozoic. Lithos, 51(1): 95~108.
- Compston W, Williams I S, Kirschvink J L, Zhang Zichao, Ma Guogan. 1992. Zircon U-Pb ages for the Early Cambrian timescale. J. Geol. Soc., London, 149: 171~184.
- Didier J, Barbarin B. 1991. Enclaves and Granite Petrology. Amsterdam: Elsevier, $1{\sim}625$.
- Griffin W L, Wang Xiang, Jackson S E, Pearson N J, O'Reilly S Y, Xu Xisheng, Zhou Xinmin. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61: 237~269.
- Griffin W L, Belousova E A, Shee S R, Pearson N J, O'Reilly S Y. 2004. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precam. Res., 131: 231~282.
- Jackson S E, Pearson N J, Griffin W L, Belousova E A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to in situ U-Pb zircon geochronology. Chem. Geol., 211: 47~69.
- Ludwig K R. 2001. Isoplot/Ex (rev. 2. 49): A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, No. 1: 1~58.

- Pidgeon R T, Nemchin A A, Hitchen G J. 1998. Internal structures of zircons from Archean granites from the Darling Range batholith: implications for zircon stability and the interpretation of zircon U-Pb ages. Contrib. Min. Petrol., 132(3): 288~ 299.
- Soderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The ¹⁷⁶Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett., 219: 311~324.
- Vervoort J D, Blichert-Toft J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. Cosmochim. Acta, 63: 533~556.
- Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Sci. Bull., 49: 1554~1569.

Xu Xisheng, Dong Chuanwan, Li Wuxian, Zhou Xinmin. 1999.

Late Mesozoic intrusive complexes in coastal area of Fujian, SE China: The significance of the gabbro-diorite-granite association. Lithos, 46: 299~315.

- Xu Xisheng, O'Reilly S Y, Griffin W L, Wang Xiaolei, Pearson N J, He Zhenyu. 2007. The crust of Cathaysia: age, assembly and reworking of two Terranes. Precam. Res., 158: 51~78.
- Yang Jinhui, Wu Fuyuan, Wilde S A, Xie Liewen, Yang Yueheng, Liu Xiaoming. 2007. Tracing magma mixing in granite genesis: in situ U-Pb dating and Hf-isotope analysis of zircons: Contrib. Min. Petrol., 153:177~190.
- Yuan Honglin, Gao Shan, Dai Mengning, Zong Chunlei, Günther D, Fontaine G H, Liu Xiaoming, Diwu Chunrong. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chem. Geol., 247: 100~118.

Zircon U-Pb Age and Hf Isotopic Compositions of Quartz Monzonite and Enclosed Mafic Enclaves in Muchen Pluton, Zhejiang Province: Tracing Magma Mixing in Their Petrogenesis

LIU Liang, QIU Jiansheng, LI Zhen

State Key Laboratory for Mineral Deposits Research, Nanjing University, Nanjing, 210093

Abstract: Numerous mafic microgranular enclaves (MMEs) with different shapes are found in quartz monzonites of the Muchen pluton in Zhejiang Province. Precise LA-ICP-MS U-Pb dating was conducted on zircon grains extracted from the host quartz monzonites and the MMEs, yielding crystallization ages of 112.1 \pm 1.0Ma and 112.4 \pm 1.2Ma, respectively. The consistent ages within analytical errors suggest that the host rocks and MMEs were coeval, providing crucial evidence for magma mixing during their petrogenesis. The MMEs commonly show plastic forms and contain similar K-feldspar megacrysts to the host rocks. Furthermore, plagioclases with core-rim zoning texture and apatites with euhedral acicular shape occur widely in the MMEs. These micrographic features are also consistent with the involvement of magma mixing in their petrogenesis. The MMEs and host quartz monzonites show similar zircon Hf isotopic signatures with $\epsilon_{\rm Hf}(t)$ values ranging from negative to positive. Integrated geological and geochemical characteristics suggest that the MMEs in Muchen pluton were most likely produced by magma mixing between mafic magmas derived from a depleted mantle source and induced felsic magmas generated from partial melting of crust materials.

Key words: mafic microgranular enclaves; quartz monzonite; zircon U-Pb age; Hf isotopic compositions; magma mixing; the Mucheng pluton, Zhejiang province